Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function.
نویسندگان
چکیده
Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-gamma, TNF-alpha, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate- or syndecan-1-deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-gamma, TNF-alpha, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients.
منابع مشابه
Heparan sulfate chains of syndecan-1 regulate ectodomain shedding.
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains...
متن کاملChondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor.
A comparative analysis was carried out of heparan sulfate (HS) and chondroitin sulfate (CS) chains of the ectodomains of hybrid type transmembrane proteoglycans, syndecan-1 and -4, synthesized simultaneously by normal murine mammary gland epithelial cells. Although the HS chains were structurally indistinguishable, intriguingly the CS chains were structurally and functionally distinct, probably...
متن کاملSyndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids.
An imbalance between proteases and antiproteases is thought to play a role in the inflammatory injury that regulates wound healing. The activities of some proteases and antiproteases found in inflammatory fluids can be modified in vitro by heparin, a mast cell-derived glycosaminoglycan. Because syndecans, a family of cell surface heparan sulfate proteoglycans, are the major cellular source of h...
متن کاملEpithelial–mesenchymal status influences how cells deposit fibrillin microfibrils
Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils...
متن کاملLung endothelial heparan sulfates mediate cationic peptide-induced barrier dysfunction: a new role for the glycocalyx.
The endothelial glycocalyx is believed to play a major role in microvascular permeability. We tested the hypothesis that specific components of the glycocalyx, via cytoskeletal-mediated signaling, actively participate in barrier regulation. With the use of polymers of arginine and lysine as a model of neutrophil-derived inflammatory cationic proteins, we determined size- and dose-dependent resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 118 1 شماره
صفحات -
تاریخ انتشار 2008